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A NEW APPROACH FOR TWO-DIMENSIONAL NONLINEAR MIXED

VOLTERRA-FREDHOLM INTEGRAL EQUATIONS AND ITS

CONVERGENCE ANALYSIS

NARGES MAHMOODI DARANI1, KHOSROW MALEKNEJAD1, HAMID MESGARANI2

Abstract. In this article, a fast numerical scheme is investigated to approximate nonlinear

mixed Volterra-Fredholm integral equations based on expansion method. In the approximation

procedure, we use expansion method in order to transform these two-dimensional integral equa-

tions into a differential equation. After making boundary conditions, this differential equation

decreases to a system algebraic equations that can be solved simply using any of the common

methods. The main characteristic of this scheme is low computational cost and CPU time to

achieve an appropriate solution. Error analysis and comparisons with other existing schemes

demonstrate the efficiency of the proposed scheme.
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1. Introduction

Let us consider general two-dimensional linear and nonlinear mixed Volterra-Fredholm integral

equations of the second kind of the forms:

f(x, y) = g(x, y) + λ

y∫
a

b∫
a

k(x, y, s, t)f(s, t) dsdt (x, y) ∈ I, (1)

f(x, y) = g(x, y) + λ

y∫
a

b∫
a

k(x, y, s, t)V (f(s, t)) dsdt (x, y) ∈ I. (2)

Here λ is constant, I = [a, b]× [a, b], and f(s, t) is unknown function, g(x, y), k(x, y, s, t) are

continuous functions and V (f(s, t)) is a nonlinear continuous function with respect to f(x, y).

Existence and uniqueness results for (1) may be found in [13, 15, 28] (see also [16, 20] for the

linear case).

Integral equations are often involved in various fields such as physics, engineering and biology

problems, and hence they have been investigated extensively. For example, see [9, 8, 21, 30] and

the references cited therein. Over the years, the integral equations and differential equations

have been used increasingly in different areas of applied sciences. Mixed Volterra-Fredholm

integral equations are extensively occurred in various fields in physics, engineering problems.
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Regarding that the essential features of the models are widely applicable in real world, so

proposing a high-order numerical schemes is significant.

The essential properties of the models have wide range of applicability [10] numerical meth-

ods have been studied numerically for solving integral equations and mixed Volterra-Fredholm

integral equations [3, 4, 5, 7, 12, 14, 27].

For example integral equations of the second type are solved with expansion method [18, 24,

29], with Gaussian radial basis function [2], with Wavelet [1, 22], with polynomial [6, 23] and

with linearization method [11].

Also mixed Volterra-Fredholm integral equations are solved using Bernoulli collocation method,

Bernstein polynomials, new iterative method and meshless methods [17, 19, 26, 27].

Here, we propose a numerical scheme based on a simple tool with high speed due to overcoming

the difficulty of solving two-dimensional integral equations.

The outline of the paper: section 2 is devoted to solution of linear two-dimensional integral

equation and section 3 is devoted to solution of nonlinear two-dimensional integral equation.

A expansion can be created for the solution f(s, t) in the integral Eq. (1) - (2) as follows:

f(s, t) =

n∑
i=0

n∑
j=0

1

i!j!

∂i∂j

∂xi∂yj
f(x, y)(s− x)i(t− y)j + E(s, t). (3)

Here E(s, t) denotes the error between f(s, t) and its expansion Eq. (3) which can be written:

E(s, t) =
1

(n+ 1)!(n+ 1)!

∂n+1∂n+1

∂xn+1∂yn+1
f(x, y)(s− x)n+1(t− y)n+1 + . . .

2. Solution of linear two-dimensional integral equation

Consider the Eq. (1). By using the first n terms of Eq. (3) and neglecting the term
y∫
a

b∫
a
k(x, y, s, t)E(s, t)dsdt in Eq. (1), then by substituting Eq. (3) for f(s, t) in the integral

in Eq. (1), one can obtain:

f(x, y)− λ

n∑
i=0

n∑
j=0

1

i!j!

∂i∂j

∂xi∂yj
f(x, y)

y∫
a

b∫
a

k(x, y, s, t)(s− x)i(t− y)jdsdt ≃ g(x, y) (4)

Thus, Eq. (4) is developed as a linear of partial differential equation that can be solved.

However, this partial differential equation requires appropriate boundary circumstances.

To build boundary conditions, first both sides of Eq. (1) are.differentiated. So, we find the

following differential equations:

∂f(x,y)
∂x = ∂g(x,y)

∂x + λ ∂
∂x

b∫
a

b∫
a
k(x, y, s, t)f(s, t)dsdt

∂f(x,y)
∂y = ∂g(x,y)

∂y + λ ∂
∂y

y∫
a

b∫
a
k(x, y, s, t)f(s, t)dsdt

...

∂i∂j

∂xi∂yj
f(x, y) = ∂i∂j

∂xi∂yj
g(x, y) + λ ∂i∂j

∂xi∂yj

y∫
a

b∫
a
k(x, y, s, t)f(s, t)dsdt.

(5)
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Next, f(s, t) is substituted by f(x, y) to obtain for i, j = 1, . . . , n

∂i∂j

∂xi∂yj
f(x, y) ≃ ∂i∂j

∂xi∂yj
g(x, y) + λ

∂i∂j

∂xi∂yj

y∫
a

b∫
a

k(x, y, s, t)f(x, y)dsdt. (6)

Now combination of Eq. (4) with Eq. (6) becomes a linear system algebraic equation that

can be solved.

3. Solution of nonlinear two-dimensional integral equation

Consider the Eq. (2). If we use the first n terms of Eq. (3) and neglect the term
y∫
a

b∫
a
k(x, y, s, t)V (E(s, t)) dsdt in Eq. (2), then by substituting Eq. (3) for f(s, t) in the integral

in Eq. (2), we will get:

f(x, y)− λ

y∫
a

b∫
a

k(x, y, s, t)V

 n∑
i=0

n∑
j=0

1

i!j!

∂i∂j

∂xi∂yj
f(x, y)(s− x)i(t− y)j

dsdt ≃ g(x, y). (7)

So Eq. (7) becomes a partial differential equation that can be solved. However, this partial

differential equation requires appropriate boundary conditions.

To make boundary conditions, first both sides of Eq. (2) are differentiated. So, we find the

following differential equations:

∂f(x,y)
∂x = ∂g(x,y)

∂x + λ ∂
∂x

y∫
a

b∫
a
k(x, y, s, t)V (f(s, t)) dsdt

∂f(x,y)
∂y = ∂g(x,y)

∂y + λ ∂
∂y

y∫
a

b∫
a
k(x, y, s, t)V (f(s, t)) dsdt

...

∂i∂j

∂xi∂yj
f(x, y) = ∂i∂j

∂xi∂yj
g(x, y) + λ ∂i∂j

∂xi∂yj

∫ y
a

b∫
a
k(x, y, s, t)V (f(s, t)) dsdt.

(8)

Next, f(s, t) is substituted by f(x, y) to obtain for i, j = 1, . . . , n

∂i∂j

∂xi∂yj
f(x, y) ≃ ∂i∂j

∂xi∂yj
g(x, y) + λ

∂i∂j

∂xi∂yj

b∫
a

b∫
a

k(x, y, s, t)V (f(x, y)) dsdt. (9)

Now combining of Eq. (7) with Eq. (9) becomes a nonlinear system algebraic equation that

can be solved.

4. Convergence analysis

∥g(x, y)∥ = max |g(x, y)|∀(x,y)∈I .
We assume that |k(x, y, s, t)| ≤ M for all (x, y), (s, t) ∈ I and let Y = (b − a)(b − a) and M

where is a positive of 2D-Taylor is denoted by

e2D−T = ∥fn(x, y)− f(x, y)∥.

Let f(x, y) be an exact solution of Eq. (1) and fn(x, y) be the approximate solution of the

Eq. (1). We present following theorems:

Theorem 4.1. Suppose that 0 < α < 1 under the tacit assumptions above, the solution of Eq.

(1), converges toward exact solution.
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Proof. Let

∥fn(x, y)− f(x, y)∥ = max |fn(x, y)− f(x, y)|

= max |g(x, y) + Υλ

y∫
0

1∫
0

k(x, y, s, t)fn(x, y)dsdt

− g(x, y)−Υλ

y∫
0

1∫
0

k(x, y, s, t)f(x, y)dsdt|

≤ max |λ||Υ|
y∫

0

1∫
0

|k(x, y, s, t)||fn(x, y)− f(x, y)|dsdt

≤ |λ||Υ|M
y∫

0

1∫
0

max |fn(x, y)− f(x, y)|dsdt

= |λ||Υ|M∥fn(x, y)− f(x, y)∥
⇒ ∥fn(x, y)− f(x, y)∥ ≤ α∥fn(x, y)− f(x, y)∥.

Where α = |λ||Υ|M . we get (1−α)∥fn(x, y)− f(x, y)∥ ≤ 0 and choose 0 < α < 1 by increasing

n, it implies ∥fn(x, y)− f(x, y)∥ → 0 as n → ∞. �
Theorem 4.2. Suppose that 0 < β < 1 under the tacit assumptions above and suppose that the

nonlinear term V (f(s, t)) is satisfied the Lipschitz condition

|V (f(s, t))− V (u(s, t))| ≤ L|f(s, t)− u(s, t)|.

The solution of integral Eq. (2), converges toward exact solution.

Proof. Let

∥fn(x, y)− f(x, y)∥ = max |fn(x, y)− f(x, y)|

= max |g(x, y) + Υλ

y∫
0

1∫
0

k(x, y, s, t)V (fn(x, y)) dsdt

− g(x, y)−Υλ

y∫
0

1∫
0

k(x, y, s, t)V (f(x, y)) dsdt|

≤ max |λ||Υ|
y∫

0

1∫
0

|k(x, y, s, t)| |V (fn(x, y))− V (f(x, y))| dsdt

≤ |λ||Υ|ML∥fn(x, y)− f(x, y)∥
⇒ ∥fn(x, y)− f(x, y)∥ ≤ β∥fn(x, y)− f(x, y)∥.

Where β = L|λ||Υ|M . we get (1−β)∥fn(x, y)−f(x, y)∥ ≤ 0 and choose 0 < β < 1 by increasing

n, it implies ∥fn(x, y)− f(x, y)∥ → 0 as n → ∞. �

5. Numerical examples

In this part, the illustrate instances are provided to indicate the accuracy and effectiveness of

the technique. All of the computations have been done using the Mathematica 7 on a personal

computer.
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Example 5.1. Consider the two-dimensional linear mixed Volterra-Fredholm integral equa-

tion [25]

f(x, y) = x2ey +

(
2

3

)
x3y2 −

x∫
0

1∫
0

y2e−tf(s, t)dtds.

Where (x, y) ∈ [0, 1)× [0, 1).

The precise solution is f(x, y) = x2ey. The solution for f(x, y) is obtained by expansion

method described in section (2), for n = 1 is collected as shown in Table 1.

Table 1. Numerical solution of Example 5.1. for n = 1.

(x, y)
Exact

f(x, y)
Eroor

(.1,0) 1.001 0

(.1,.1) 0.0110517 3.34691× 10−6

(.1,.3) 0.0134986 3.03472× 10−5

(.1,.5) 0.0164872 8.22639× 10−5

(.1,.7) 0.0201375 1.48971× 10−4

(.1,.9) 0.024596 2.05545× 10−4

Example 5.2. Consider the two-dimensional linear mixed Volterra-Fredholm integral equa-

tion [26]

f(x, y) = x2 + xy − (1.15)xy4 − (1.16)xy5 +

y∫
0

1∫
0

xys2t2f(s, t)dsdt.

Where (x, y) ∈ [0, 1)× [0, 1).

The exact solution is f(x, y) = x2 + xy. The solution for f(x, y) is obtained by expansion

method described in section 2, for n = 1 is collected as shown in Table 2.

Table 2. Numerical solution of Example 5.2. for n = 1.

(x, y)
Exact

f(x, y)

Approximation

f(x, y)
Eroor

(0,0) 0,000 0,000 0,000

(.1,.1) 0.02 0.0199995 5.11111× 10−7

(0,.3) 0.09 0.09 0.000

(.1,.3) 0.12 0.119999 7.99995× 10−7

(0,.5) 0.25 0.25 0.000

(.1,.5) 0.3 0.299999 5.55539× 10−7

(0,.7) 0.49 0.49 0.000

(.1,.7) 0.56 0.56 3.11082× 10−7

(0,.9) 0.81 0.81 0.000

(.1,.9) 0,9 0,899999 5.99971× 10−7

Example 5.3. Consider the two-dimensional nonlinear mixed Volterra-Fredholm integral

equation

f(x, y) = (1− 3y − 2y2 + 24x cos y − cos 2y − 3 cos y sin y − 2y sin 2y)/24

y∫
0

1∫
0

(s+ t)f2(s, t)dsdt

Where (x, y) ∈ [0, 1)× [0, 1.)
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The exact solution is f(x, y) = x cos y. The solution for f(x, y) is obtained by expansin method

described in section 3, for n = 1 is collected as shown in Table 3.

Table 3. Numerical solution of Example 5.3. for n = 1.

(x, y)
Exact

f(x, y)

Approximation

f(x, y)
Eroor

(0,.01) 0.0099995 0.0100081 8.63674× 10−6

(0,.21) 0.20999 0.209997 7.88799× 10−6

(0,.41) 0.40998 0.409985 5.77887× 10−6

(0,.61) 0.60997 0.609972 2.31199× 10−6

(0,.81) 0.80996 0.809957 2.50842× 10−6

(0,.91) 0.909955 0.909949 5.42443× 10−6

6. Conclusions

In this article, we utilized expansion technique for solving linear and nonlinear two-dimensional

mixed Volterra-Fredholm integral equations of second type. This technique is very simple and

involves less computation. Two-dimensional mixed Volterra-Fredholm integral equations are

regularly difficult to solve analytically. In many circumstances, obtaining approximate solutions

is required, this indicates that the presented method can be extended for the higher dimensional

problems and other classes of integral equations such as linear and nonlinear two-dimensional

Volterra integral equations and linear and nonlinear three-dimensional mixed Volterra-Fredholm

integral equations.
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